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Nonproliferation and Safeguards Overview
(From the INITIAL Module)



GOAL: Prevent nuclear weapon proliferation

Nuclear Test at the Mururoa atoll, French 
Polynesia (courtesy The Atlantic)
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Global Nuclear Nonproliferation and Arms Control

decrease number of states/non-state actors 
attempting to possess nuclear weapons

decrease 
capabilities 
of existing 

nuclear 
states

What can we do?

 Encourage/ensure peaceful 
nuclear uses

 Secure, safeguard, and/or 
dispose of dangerous nuclear 
and radiological material

 Detect and control the 
proliferation of related WMD 
technology and expertise



 Nuclear Non-Proliferation Treaty (NPT)

⟶ Bans acquisition of nuclear weapons by 
non-weapon states

 Comprehensive Test Ban Treaty

⟶ Bans nuclear explosions

 Fissile Material (Cutoff) Treaty

⟶ Would ban fissile material production
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How These Goals Are Achieved

Science and technology play a vital role

Note: Verification is the key element



 Cost and Time make producing Significant 
Quantities (SQ) of nuclear material is the most 
difficult step to production of  nuclear weapons

 Historically, Special Nuclear Material production 
for proliferation purposes has been achieved via:
 Enrichment of uranium
 Reprocessing of plutonium from spent fuel
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Fissile Material Production

Nuclear Material SQ

Plutonium (<80% Pu-238) 8 kg Pu

Uranium-233 8 kg U-23

HEU (≥20% U-235) 25 kg U-235

LEU (<20% U-235) 75 kg U-235

Natural/Depleted U 10 tons/20 tons

Thorium 20 tons
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Source: NRC.gov

The Nuclear Fuel Cycle



 “Delivering Effective Nuclear Verification for World Peace”

 The objective of safeguards is the timely detection of diversion of 
significant quantities of nuclear material from peaceful nuclear activities 
to the manufacture of nuclear weapons 

 Inspect nuclear facilities worldwide, monitor amounts of nuclear 
materials to ensure that it isn’t going to illicit uses

 Work conducted under Comprehensive Safeguards Agreements
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International Safeguards

Source(s): www-pub.iaea.org/MTCD/Publications/PDF/nvs1_web.pdf
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International Atomic Energy Agency and LANL
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The International Atomic Energy Agency
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The International Atomic Energy Agency
• Currently, the IAEA is working to advance the following initiatives (among 

many others...)
− Universal acceptance of the Additional Protocol
− Safeguards-by-design
 Integrated within a facility’s design, covering 

safeguards and security
− Unattended monitoring & data integration
 Robust data management systems to reduce 

on-site inspector presence
− State-level Concept
 Assessing each State as a whole
 Developing unified and consistent 

State-Level Approaches 
 Establishing safeguards measures based on 

path attractiveness rather than simply material 
attractiveness
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LANL Support
Over 50 years of support for the IAEA 

through…

Technology development

Training

Expertise
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Nondestructive Assay
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Nondestructive Assay

• NDA is the most commonly employed technique for material accountancy
• A series of gamma or neutron detectors are typically used to measure 

radiation emitted from the sample of interest
• Energy, timing, and intensity of radiation may be correlated to isotope type 

and quantity in the sample

• Passive interrogation requires good signal intrinsic to sample (240Pu, 252Cf)
• Active interrogation requires fissile material or material prime for gamma 

interactions (235U, 239Pu)

Passive: 
No external source

Active: 
Neutrons or gammas 

irradiate source to 
magnify signal

Sample

n, γ

Sample
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Neutrons and Photons as NDA Signatures

Less common

– Nucleus (gamma-ray)

– Nuclear collision (gamma-
ray)

– Electron cloud (x-ray)

Energy

High Z material

HPGe, Scintillators, NaI, CZT, 
LaBr

Neutrons Photons

− Spontaneous and induced fission
− (α,n)
− Cosmic rays
− (p,n)
− (n,2n)
− (γ,n)

Time and correlations

Low Z material

3He, Scintillators, fission chambers
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History of Neutron Counting for NDA

• TOTAL NEUTRON
− Record the total number of neutrons detected in a certain amount of time
− Accurate assays can be obtained only for very few types of SNM

• COINCIDENCE COUNTING
− Record the number of times two neutrons arrive within a set time window (gate)
− Wide application for international safeguards
 focused on verifying declared materials 

• NEUTRON MULTIPLICITY COUNTING
− Extension of neutron coincidence counting  
− Record the number of times we detect 2, 3, 4, etc. neutrons within a gate
− It improves neutron assay accuracy  dramatically by adding more measured 

information
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Neutron Coincidence Counter

• 3He neutron detectors
• Fission source (Pu) surrounded by neutron 

detectors
• Emission of multiple prompt neutrons from 

fission detected as coincident neutron 
events

• Multiplicity information is used to calculate 
the mass of fissile isotopes

Fissioning
Source

Pulse-processing Electronics
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Neutron Coincidence Counting

Detected 
Neutrons

Spontaneous 
Fission

Time
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Neutron Coincidence Counting

Spontaneous 
Fission

Detected 
Neutrons

Time
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Rossi-Alpha Distribution
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Epithermal Neutron Multiplicity Counter (ENMC)

• ε = 65.0%
• τ = 22.0 µsec
• 121 tubes
• 27 preamplifier channels
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FRAM

• FRAM is an isotopic analysis code nominally designed for plutonium and 
uranium.

• Fixed-energy Response-function Analysis with Multiple efficiencies.
• Self-calibration using several gamma-ray peaks. 
• Analyze gamma ray data from 30keV to >1MeV of HPGe, CdTe, CZT, and 

LaBr3 detector.

Pu, 285-481 keV, LaBr3 U, 152-226 keV, CZT
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Spent Fuel Characterization
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Power Reactor vs. Research Reactor

• Why are these two VERY different characterization problems?

Power Research

Size ~4 m long, 20 cm across, 1000 lbs ~80 cm long, 8 cm across, 13 lbs

Neutrons ~1E8 1/s ~1E4 1/s

Neutron Emitters 242Cm, 244Cm, 240Pu 240Pu

Operating History Predictable, $$$ Unpredictable, research

Easy Availability of Calibration 
Standards?

Nope! Nope!
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Passive Gamma Emission Tomography (PGET)

• Three simultaneous measurements: gross neutron, gamma 
spectroscopy, and 2D emission tomography

• Create an axial image of emission locations to detect pin-
level diversions

• Measurements take 3-5 minutes
Mayorov et al., IEEE, 2017

• Neutron data are used for BU, 
spectroscopy data for CT or to verify 
non-fuel items

• Has been tested for burnups from 5.7-58 
GWd/tU and cooling times from 1.9-27 
years

Miller et al., PNNL, 2017
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Advanced Experimental Fuel Counter

• Designed for research reactor spent fuel characterization
• System uses:
− Active and passive neutron coincidence counting
− An ion chamber for gross gamma-ray counting

• Measurement objective is to verify residual fissile 
mass (i.e., 235U + 239Pu) using active neutron 
interrogation

• Field trials have occurred as follows:
− 2006 High Flux Australian Reactor (HIFAR), Australia
− 2011 Institute of Nuclear Physics (INP), Uzbekistan
− 2014 Institute of Nuclear Physics (INP), Uzbekistan
− 2018 Soreq Nuclear Research Center (SNRC), Israel
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Advanced Experimental Fuel Counter

3He 
Tubes

Fuel 
Funnel 252Cf 

Source

• Measure top, middle, and bottom of 
assemblies with active and passive 
interrogation
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Advanced Experimental Fuel Counter

Active Doubles – Passive Doubles – Cf Doubles = Net Active Doubles

• Net active doubles rate 
is proportional to 
residual fissile mass

• But it can vary! Control 
rod insertion, operating 
history, assembly 
rotation, cooling time, 
can all affect the 
doubles rate relative to 
the fissile mass
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Thank you!

Questions?
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